Gumm terms imply cyclic terms

 FOR FINITE ALGEBRASMiklós Maróti and Ralph McKenzie

Szeged, July 19, 2007

Terms

Def. A ternary operation is Malt'sev if $x \approx q(x, y, y)$ and $q(x, x, y) \approx y$.
Def. The ternary operations $s_{0}, s_{1}, \ldots, s_{2 m}, q$ are Gumm terms if

$$
\begin{aligned}
x & \approx s_{0}(x, y, z) & & \\
s_{i}(x, y, x) & \approx x & & \text { for all } i \\
s_{i}(x, x, y) & \approx s_{i+1}(x, x, y) & & \text { for } i \text { odd } \\
s_{i}(x, y, y) & \approx s_{i+1}(x, y, y) & & \text { for } i \text { even } \\
s_{2 m}(x, y, y) & \approx q(x, y, y) & & \\
q(x, x, y) & \approx y . & &
\end{aligned}
$$

Def. An operation t of arity $n \geq 2$ is cyclic if $t(x, x, \ldots, x) \approx x$ and

$$
t\left(x_{1}, x_{2}, \ldots, x_{n}\right) \approx t\left(x_{2}, x_{3}, \ldots, x_{1}\right)
$$

Def. An operation t of arity $n \geq 2$ is weak near-unanimity if $t(x, x, \ldots, x) \approx x$ and

$$
t(y, x, \ldots, x) \approx t(x, y, x, \ldots, x) \approx \cdots \approx t(x, \ldots, x, y)
$$

Semantic Theorems

Thm (McKenzie, -). A finite algebra \mathbf{A} lies in a variety omitting types $\mathbf{1}$ and $\mathbf{2}$ (congruence meet semi-distributive) iff A has weak near-unanimity terms of arity n for almost all n.

Thm (McKenzie, -). A finite algebra A lies in a variety omitting type $\mathbf{1}$ iff \mathbf{A} has a weak near-unanimity term of some arity.

Thm (Barto, Kozik, Niven). If a finite algebra A has Jónsson terms (lies in a congruence distributive variety), then \mathbf{A} has cyclic terms of arity p for all primes $p>|A|$.

Thm. If a finite algebra A has Gumm terms (lies in a congruence modular variety), then \mathbf{A} has cyclic terms of arity p for all primes $p>|A|$.

Example. The infinite cylic group $(\mathbb{Z} ;+)$ has no cylic term.
Example. Any finite algebra $(A ; t)$ with the ternary discriminator operation has no cylic term of length less than or equal to $|A|$.
Example. Any semilattice has cylic terms $t=x_{1} \wedge x_{2} \wedge \cdots \wedge x_{n}$ for all arities.

Bounded Width and Cyclic Terms

$$
\begin{aligned}
\mathbf{P} & \leq \mathbf{A} \times \mathbf{A} \times \mathbf{A} \\
\mathbf{Q} & \leq \mathbf{A} \times \mathbf{A} \times \mathbf{A} \\
\mathbf{R} & \leq \mathbf{A} \times \quad \mathbf{A} \times \mathbf{A} \\
\mathbf{S} & \leq \mathbf{A} \times \mathbf{A} \times \quad \mathbf{A}
\end{aligned}
$$

consistent relations

$$
\left.P\right|_{\{2,3\}}=\left.Q\right|_{\{2,3\}}
$$

$$
\left.Q\right|_{\{3,4\}}=\left.R\right|_{\{3,4\}}
$$

$$
\left.R\right|_{\{4,1\}}=\left.S\right|_{\{4,1\}}
$$

$$
\left.S\right|_{\{1,2\}}=\left.P\right|_{\{1,2\}}
$$

Is there $a b c d \in A^{4}$ such that $a b c \in P, b c d \in Q$ $a c d \in R$ and $a b d \in S ?$

$$
\begin{aligned}
& a_{1} \quad b_{1} \quad c_{1} \quad \in P \\
& a_{1} \quad b_{1} \quad c_{1} \quad-\in P \quad a_{2} \quad b_{2} \quad c_{2} \quad \in P \\
& -\quad b_{1} \quad c_{1} \quad d_{1} \in Q \\
& a_{2} \quad-\quad c_{1} \quad d_{1} \in R \\
& a_{2} \quad b_{2} \quad-\quad d_{1} \in S \\
& \begin{array}{ccc}
a_{n} & b_{n} & c_{n} \\
\cline { 1 - 2 } a & b & c
\end{array} \in P \\
& a_{2} \quad b_{2} \quad c_{2} \quad-\quad \in P \\
& a_{n} \quad b_{n} \quad c_{n} \quad-\quad \in P \\
& -b_{n} \quad c_{n} \quad d_{n} \in Q \\
& a_{1} \quad-c_{n} \quad d_{n} \in R \\
& a_{1} \quad b_{1} \quad-\quad d_{n} \in S \\
& a_{1} \quad b_{1} \quad c_{1} \quad-\quad \in P \\
& \text { where } a=t\left(a_{1}, \ldots, a_{n}\right) \text {, } \\
& b=t\left(b_{1}, \ldots, b_{n}\right) \text {, etc. }
\end{aligned}
$$

The Nicely Connected Graph

- Let \mathbf{A} be a finite algebra of minimal size with Gumm terms and without cyclic term of arity p for some prime $p>|A|$.
- We can assume that \mathbf{A} is idempotent (Gumm terms are the basic operations)
- There exists $\bar{a} \in A^{p}$ such that the subpower $\mathbf{B} \leq \mathbf{A}^{p}$ generated by the tuples

$$
\begin{aligned}
\bar{a} & =\left\langle a_{1}, a_{2}, a_{3}, \ldots, a_{p}\right\rangle \\
\sigma(\bar{a}) & =\left\langle a_{2}, a_{3}, a_{4}, \ldots, a_{1}\right\rangle \\
& \vdots \\
\sigma^{p-1}(\bar{a}) & =\left\langle a_{p}, a_{1}, a_{2}, \ldots, a_{p-1}\right\rangle
\end{aligned}
$$

contains no constant tuple $\langle c, c, \ldots, c\rangle$

- \mathbf{B} is subdirect and closed under σ
- A is simple
- If \mathbf{A} is abelian, then
- A has a Malt'sev term (by Commutator Theory)
$-\mathbf{B} \cong \mathbf{A}^{k}$ for some $k \leq p$ (by Fleischer's Lemma)
- p does not divide $|B|$
- σ on B has a one-element orbit, a contradiction
- Thus A is non-abelian and non-Malt'sev
- Con B is distributive (by Commutator Theory)
- Define the graph $G=(V, E)$ where

$$
\begin{aligned}
V & =\left\{\left\langle b_{1}, \ldots, b_{p-1}\right\rangle: \bar{b} \in B\right\} \\
E & =\left\{\left(\left\langle b_{1}, \ldots, b_{p-1}\right\rangle,\left\langle b_{2}, \ldots, b_{p}\right\rangle\right): \bar{b} \in B\right\}
\end{aligned}
$$

- Every vertex is on a cycle of length p (via the σ automorphism)
- G is strongly connected and contains a cycle of length $k p+1$ for some integer k (from the distributivity of Con \mathbf{B} using projection kernels)
- The greatest common divisor of the length of cycles in G is 1
- G contains no loop

The Loop Lemma

Lemma. Let $\mathbf{E} \leq \mathbf{V}^{2}$ be a nontrivial strongly connected directed graph where
(1) the greatest common divisor of the length of loops is 1 , and
(2) \mathbf{V} has the property ...

Then $\langle c, c\rangle \in E$ for some $c \in V$.

- Put $N_{0}=\{v\}$ for some fixed $v \in V$, and

$$
N_{i+1}=\left\{v \in V: u \in N_{i} \text { and }\langle u, v\rangle \in E\right\}
$$

- $\{v\}=N_{0} \rightarrow N_{1} \rightarrow \cdots \rightarrow N_{i}$ (exactly i-step reachable vertices)
- $N_{k} \subset N_{k+1}=V$ for some k.
- $N_{k}<V$ is a proper subuniverse (from idempotency)
- N_{k} is a Jónsson ideal, i.e. $p_{i}(u, x, v) \in N_{k}$ for all $u, v \in N_{k}, x \in V$, and i
- We define $\mathbf{C} \leq N_{k}$, and a congruence ϑ so that $\mathbf{C} / \vartheta \vDash q(x, y, y) \approx x$ (Malt'sev)
- If $\vartheta \neq 1$, then \mathbf{A} is a homomorphic image of the Malt'sev algebra \mathbf{C} / ϑ
- If $\vartheta=1$, then G can be replaced with a smaller one
- By induction we always get a contradiction

