GUMM TERMS IMPLY CYCLIC TERMS FOR FINITE ALGEBRAS

Miklós Maróti and Ralph McKenzie

Szeged, July 19, 2007

TERMS

Def. A ternary operation is *Malt'sev* if $x \approx q(x, y, y)$ and $q(x, x, y) \approx y$. **Def.** The ternary operations $s_0, s_1, \ldots, s_{2m}, q$ are *Gumm* terms if

$$\begin{aligned} x &\approx s_0(x, y, z) \\ s_i(x, y, x) &\approx x & \text{for all } i \\ s_i(x, x, y) &\approx s_{i+1}(x, x, y) & \text{for } i \text{ odd} \\ s_i(x, y, y) &\approx s_{i+1}(x, y, y) & \text{for } i \text{ even} \\ s_{2m}(x, y, y) &\approx q(x, y, y) \\ q(x, x, y) &\approx y. \end{aligned}$$

Def. An operation t of arity $n \ge 2$ is *cyclic* if $t(x, x, ..., x) \approx x$ and

$$t(x_1, x_2, \ldots, x_n) \approx t(x_2, x_3, \ldots, x_1).$$

Def. An operation t of arity $n \ge 2$ is *weak near-unanimity* if $t(x, x, ..., x) \approx x$ and

$$t(y, x, \dots, x) \approx t(x, y, x, \dots, x) \approx \dots \approx t(x, \dots, x, y).$$

Semantic Theorems

Thm (McKenzie, —). A finite algebra **A** lies in a variety omitting types **1** and **2** (congruence meet semi-distributive) iff **A** has weak near-unanimity terms of arity n for almost all n.

Thm (McKenzie, —). A finite algebra \mathbf{A} lies in a variety omitting type $\mathbf{1}$ iff \mathbf{A} has a weak near-unanimity term of some arity.

Thm (Barto, Kozik, Niven). If a finite algebra **A** has Jónsson terms (lies in a congruence distributive variety), then **A** has cyclic terms of arity p for all primes p > |A|.

Thm. If a finite algebra **A** has Gumm terms (lies in a congruence modular variety), then **A** has cyclic terms of arity p for all primes p > |A|.

Example. The infinite cylic group $(\mathbb{Z}; +)$ has no cylic term. **Example.** Any finite algebra (A; t) with the ternary discriminator operation has no cylic term of length less than or equal to |A|.

Example. Any semilattice has cylic terms $t = x_1 \land x_2 \land \cdots \land x_n$ for all arities.

BOUNDED WIDTH AND CYCLIC TERMS

						a_{1}	1	b_1	c_1	$\in P$
$\mathbf{P} \leq \mathbf{A} \times \mathbf{A} \times \mathbf{A},$	a_1	b_1	c_1	_	$\in P$	a_2	2	b_2	c_2	$\in P$
$\mathbf{Q} \leq \mathbf{A} imes \mathbf{A} imes \mathbf{A},$	_	b_1	c_1	d_1	$\in Q$			• •		
$\mathbf{R} \leq \mathbf{A} \times \mathbf{A} \times \mathbf{A},$	a_2	_	c_1	d_1	$\in R$	a_{η}	n	b_n	c_n	$\in P$
$\mathbf{S} \leq \mathbf{A} imes \mathbf{A} imes \qquad \mathbf{A},$	a_2	b_2	_	d_1	$\in S$	a	,	b	С	$\in P$
consistent relations	a_2	b_2	c_2	—	$\in P$					
$P _{\{2,3\}} = Q _{\{2,3\}}$:	a_2	2	b_2	d_1	$\in S$
$Q _{\{3,4\}} = R _{\{3,4\}}$	a_n	b_n	c_n	—	$\in P$	a_{\sharp}	3	b_3	d_2	$\in S$
$R _{\{4,1\}} = S _{\{4,1\}}$		b_n	c_n	d_n	$\in Q$			• •		
$S _{\{1,2\}} = P _{\{1,2\}}$	a_1		c_n	d_n	$\in R$	a_1	1	b_1	d_n	$\in S$
	a_1	b_1	_	d_n	$\in S$	a	,	b	d	$\in S$
Is there $abcd \in A^4$ such that $abc \in P$, $bcd \in Q$	a_1	b_1	c_1	_	$\in P$	wh	ere	<i>a</i> =	= t(a)	$a_1,\ldots,a_n),$
$acd \in R \text{ and } abd \in S?$						$b = t(b_1,, b_n),$ etc.				

The Nicely Connected Graph

- Let A be a finite algebra of minimal size with Gumm terms and without cyclic term of arity p for some prime p > |A|.
- We can assume that **A** is idempotent (Gumm terms are the basic operations)
- There exists $\bar{a} \in A^p$ such that the subpower $\mathbf{B} \leq \mathbf{A}^p$ generated by the tuples

$$\bar{a} = \langle a_1, a_2, a_3, \dots, a_p \rangle$$
$$\sigma(\bar{a}) = \langle a_2, a_3, a_4, \dots, a_1 \rangle$$
$$\vdots$$
$$\sigma^{p-1}(\bar{a}) = \langle a_p, a_1, a_2, \dots, a_{p-1} \rangle$$

contains no constant tuple $\langle c, c, \ldots, c \rangle$

- **B** is subdirect and closed under σ
- A is simple

- If **A** is abelian, then
 - **A** has a Malt'sev term (by Commutator Theory)
 - $\mathbf{B} \cong \mathbf{A}^k$ for some $k \le p$ (by Fleischer's Lemma)
 - p does not divide |B|
 - σ on B has a one-element orbit, a contradiction
- $\bullet\,$ Thus ${\bf A}$ is non-abelian and non-Malt'sev
- Con **B** is distributive (by Commutator Theory)
- Define the graph G = (V, E) where

$$V = \{ \langle b_1, \dots, b_{p-1} \rangle : \overline{b} \in B \}$$
$$E = \{ (\langle b_1, \dots, b_{p-1} \rangle, \langle b_2, \dots, b_p \rangle) : \overline{b} \in B \}$$

- Every vertex is on a cycle of length p (via the σ automorphism)
- G is strongly connected and contains a cycle of length kp + 1 for some integer k (from the distributivity of Con **B** using projection kernels)
- The greatest common divisor of the length of cycles in G is 1
- G contains no loop

The Loop Lemma

Lemma. Let $\mathbf{E} \leq \mathbf{V}^2$ be a nontrivial strongly connected directed graph where

(1) the greatest common divisor of the length of loops is 1, and

(2) **V** has the property \dots

Then $\langle c, c \rangle \in E$ for some $c \in V$.

• Put $N_0 = \{v\}$ for some fixed $v \in V$, and

 $N_{i+1} = \{ v \in V : u \in N_i \text{ and } \langle u, v \rangle \in E \}$

- $\{v\} = N_0 \to N_1 \to \cdots \to N_i$ (exactly *i*-step reachable vertices)
- $N_k \subset N_{k+1} = V$ for some k.
- $N_k < V$ is a proper subuniverse (from idempotency)
- N_k is a Jónsson ideal, i.e. $p_i(u, x, v) \in N_k$ for all $u, v \in N_k$, $x \in V$, and i
- We define $\mathbf{C} \leq N_k$, and a congruence ϑ so that $\mathbf{C}/\vartheta \models q(x, y, y) \approx x$ (Malt'sev)
- If $\vartheta \neq 1$, then **A** is a homomorphic image of the Malt'sev algebra \mathbf{C}/ϑ
- If $\vartheta = 1$, then G can be replaced with a smaller one
- By induction we always get a contradiction